ABSTRACT
Anomalous blood vessels are important from the clinical aspects such as hydroureteronephrosis, Varicocele leading to risk of infarction of kidney during renal transplant surgeries. Here, we report a case series of 30 cadavers of male and female aged between 40-80 years in the Department of Anatomy of a tertiary care institute in Bangalore, India. In three male cadavers, there was a variation in right testicular artery arising from abdominal aorta above the right renal artery later coursing downward, giving a branch to right kidney (10%). In another two male cadavers, right testicular artery (6.6%) was arising as branch of abdominal aorta above the right renal artery later coursing downward giving branch to right suprarenal gland and also observed right accessory renal artery branch of abdominal aorta arising below superior mesenteric artery and coursing upward to lower pole of right kidney. Observed in two male cadaver, inferior phrenic artery was arising as a common trunk from abdominal aorta above the main renal vessels and coursing laterally upward to diaphragm (6.6%). All the other branches of abdominal aorta and venous drainage were normal in the dissection of cadavers. The knowledge of these variations of arteries are essential before performing any transplantation surgeries, thus one can avoid the complications during uroradiological interventions.

INTRODUCTION
The gonadal arteries are the paired branches of the abdominal aorta emerging normally a little inferior to the renal arteries above the inferior mesenteric artery. According to the gender, they are named as testicular or ovarian artery [1]. The kidneys and gonads both develop from the intermediate mesoderm and supplied by the lateral mesonephric branches of the dorsal aorta. Caudal group of mesonephric branches give rise to gonadal artery while their persistence give rise to accessory renal artery. During the ascending of kidney and descending of gonads, they receive two main branches of mesonephric arteries, the one above and the other below. The lower branch usually atrophies when the organs reach their final position. Anomalies during the degeneration of these primitive arteries might lead to variations [2-4]. Normal pattern of gonadal artery was followed in the 83-75% to least 4.7% [5-7]. The gonadal arteries arise from the main renal arteries with a frequency which varies from 1.47-17% [5,8] while their origin from an accessory renal artery ranges from 5.5-31.25% and it occur bilaterally only in the 1.1% of cases [2,6]. In addition to the normal pattern, several other sites of origin of the gonadal artery have been described; among them the renal, accessory renal and suprarenal arteries are most commonly mentioned and more rarely from the lumbar, common iliac or internal iliac and superior epigastric artery [9]. Variation in origin of inferior phrenic arteries may arise from a common aortic origin with the coeliac trunk, from the coeliac trunk itself or from the renal artery [1]. The accessory renal artery apart from its branches to renal or from the aorta or from a branch of the aorta which enters the kidney at either pole [10].

CASE SERIES
An observational study was done to find any variations in branches of abdominal aorta during the routine dissection of posterior abdominal wall of 30 cadavers (20 males and 10 females) aged between 40-80 years were dissected for a period of two year in 2020 and 2021 in the Department of Anatomy, Sapthagiri Institute of Medical Sciences and Research Centre, Bangalore, India. The posterior abdominal wall was dissected to find the variations in the branches of abdominal aorta.

Inclusion criteria: Cadavers with no previous history of abdominal surgery and age between 40-80 years were included in the study.

Exclusion criteria: Cadavers with previous history of abdominal surgery and with adhesions of posterior abdominal wall were excluded from the study.

Incidence of phrenic artery, testicular artery, accessory artery was 3.3%, 6.6% and 6.6%, respectively [Table/Fig-1].

<table>
<thead>
<tr>
<th>Variation in branches of abdominal aorta</th>
<th>Gender</th>
<th>Origin</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inferior phrenic artery</td>
<td>Male</td>
<td>Origin as common trunk from Abdominal Aorta (AA)</td>
<td>3.3%</td>
</tr>
<tr>
<td>Testicular artery</td>
<td>Right side in males</td>
<td>Two cases origin from Abdominal Aorta above main renal artery</td>
<td>6.6%</td>
</tr>
<tr>
<td>Accessory renal artery crossing anterior to Inferior vena cava</td>
<td>Right side in males</td>
<td>Two cases origin from Abdominal Aorta below main renal artery</td>
<td>6.6%</td>
</tr>
</tbody>
</table>

[Table/Fig-1]: Showing the incidence of variation in the branches of abdominal aorta with respect to gender and sides.

Posterior abdominal wall was dissected to find the variations in the branches of abdominal aorta after reflecting the peritoneum of posterior abdominal wall. A clean dissection of abdominal aorta and its branches were done. We observed in three male cadavers, there was a variation in right testicular artery (10%) arising from abdominal aorta above the right renal artery coursing downward giving a branch to right kidney crossing anterior to right renal vessels, right ureter and later taking normal course [Table/Fig-2]. In another two male cadavers, the authors observed that the right testicular artery (6.6%) was arising as branch of abdominal aorta above the right renal artery at the level of superior mesenteric artery giving a branch to right suprarenal gland, going downward crossing anterior to right renal vessels, right ureter and later taking normal course and also observed right accessory renal artery arising from abdominal aorta below the renal vessels, crossing anterior to inferior vena cava going to lower pole of right kidney [Table/Fig-3]. Observed in two male cadavers in which inferior phrenic artery (6.6%) was arising as a common trunk from

Keywords: Hepatocellular carcinoma, Renal surgery, Renal transplantation, Varicocele of testis, Vascular variations
The kidneys and gonads both develop from the intermediate mesoderm and supplied from lateral mesonephric branches of the dorsal aorta. Caudal group of mesonephric branches give rise to gonadal artery while their persistence give rise to accessory renal artery. During the ascending of kidney and descending of gonads they receive two main branches of mesonephric arteries the one above and the other below. The lower branch usually atrophies when the organs reach their final position. Anomalies during the degeneration of these primitive arteries might lead to variations [8,18-20]. These anomalies may be important from the clinical point of view in that they may cause Varicocele, hydrenephrosis, Nephrophtosis and malrotation of the kidney.

Embryological basis:

DISCUSSION

Normal pattern of gonadal artery was followed in 83-75% to least 4.7% [4-6]. Variation in high origin of testicular artery from abdominal aorta was as follows:

- Originating 1 cm superior to the origin of the inferior phrenic artery branched off and subdivided into a supernumerary inferior phrenic artery and a superior suprarenal artery [9]
- Originating at the level of the right renal artery [10]
- Arising from the abdominal aorta at the level of the left renal artery [11]
- High origin of the left testicular artery originating from the left renal artery [12]

- Originating from the left renal artery branch of the inferior polar artery emerging from the main renal artery on one right side or as double testicular artery.

Study showed that there was no gender related difference in the course and origin of the gonadal arteries [13]. The variations in the origin of the gonadal artery observed in spontaneously aborted foetuses was classified into four types Type1 as origin from the suprarenal artery. Type 2 as origin from the renal artery, Type 3 as high-positional origin from the abdominal aorta, at the level of the renal artery and Type 4 as duplication of the testicular artery [8].

Authors

<table>
<thead>
<tr>
<th>Authors</th>
<th>No. of cadavers</th>
<th>Variations</th>
<th>Right</th>
<th>Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onderoglu S et al., [11]</td>
<td>66</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Asala S et al., [7]</td>
<td>150</td>
<td>5</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Gupta A et al., [15]</td>
<td>30</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mamatha H et al., [16]</td>
<td>40</td>
<td>7</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Notkovitch H [14]</td>
<td>50</td>
<td>10</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Cicekobasi AE et al., [2]</td>
<td>-</td>
<td>11</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Pai MM et al., [8]</td>
<td>34</td>
<td>9</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Present case series</td>
<td>30</td>
<td>5</td>
<td>5</td>
<td>-</td>
</tr>
</tbody>
</table>

Table/Fig-5: Showing incidence of origin of testicular arteries variations with other authors [2,7,8,11-16].
CONCLUSION(S)
The knowledge of variations reported here is very useful for radiologists, urologists and surgeons while performing nephron-preserving surgery, kidney transplantation, and the management of renal vascular hypertension. The knowledge of these variations may also provide safety guidelines for endovascular procedures like therapeutic embolisation and angioplasties.

REFERENCES

PARTICULARS OF CONTRIBUTORS:
1. Associate Professor, Department of Anatomy, Sathagiri Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India.
2. Professor, Department of Anatomy, East Point Medical College, Bangalore, Karnataka, India.
3. Principal and Dean, Professor, Department of Anatomy, Sathagiri Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India.
4. Professor and Head, Department of Ophthalmology, Sathagiri Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India.
5. Principal and Dean, Professor, Department of Anatomy, Sathagiri Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India.

NAME, ADDRESS, E-MAIL ID OF THE CORRESPONDING AUTHOR:
Geethanjali Basavaraj Savalgi, No. 45, 5th Cross, Malagal, Bangalore, Karnataka, India.
E-mail: geethamohan76@gmail.com

AUTHOR DECLARATION:
• Financial or Other Competing Interests: None
• Was informed consent obtained from the subjects involved in the study? Yes
• For any images presented appropriate consent has been obtained from the subjects. Yes

PLAGIARISM CHECKING METHODS: [iThenticate software] 17%
ETYMOLOGY: Author Origin

Date of Submission: Jul 06, 2021
Date of Peer Review: Sep 09, 2021
Date of Acceptance: Nov 02, 2021
Date of Publishing: Jan 01, 2022